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SUMMARY

Fazzari (1992)showed that the conventional geometrical spread
ing correction used in seismic processing is incorrect for dip-
ping beds at large traveltimes. This can be remedied by us-
ing a dip-dependent geometrical spreading correction, as was
demonstrated by Fazzari.We show that it is also possible
to provide exactly the same spherical spreading correction
via prestack migration by modifying existing schemes slightly.
This modification is derived via a least-squares inverse scheme
relating seismic data to reflection coefficients. The scheme
also works for poststack data, but would require the use of a
true zero-offset model for migration instead of the standard
exploding reflector model.For illustration two simple data
examples are provided. In the first example 3-D prestack mi-
gration schemes are used to image two point-diffractors. The
conventional schemes grossly underestimates the strength of
the diffractors.  modified scheme is shown to provide a much
more correct amplitude.The data for the second example
consists of a single split-spread record shot over a steeply dip-
ping reflector. The results of conventional and modified 2-D
prestack schemes are compared, and the modified scheme is
shown to provide better estimates of the reflection coefficient.

INTRODUCTION

Migration methods based on the wave equation have been in
practical use as a tool for processing and interpretation of seis-
mic data since the early 1970’s (Claerbout 71). In the years
following substantial practical experience has been gained by
the seismic industry on how to handle migration in various
situations. The use of migration has undoubtly led to im-
proved quality of interpreted geological models. With the

 came the introduction of linearized inversion schemes
(Clayton and Stolt 81, Stolt and Weglein 85)) (and even com-
prehensive non-linear schemes (Tarantola  where the aim
was to get a detailed map of wave velocities and densities
of the subsurface with prestack data as input. Few of these

schemes have gained wide acceptance in the industry, mainly
because they are thought to be little less than an academic
rephrasing of well known migration algorithms. In some re-
spects this is true, particularly if viewed as a structural imag-
ing tool. However, if properly interpreted, inversion schemes
can be used to get a better understanding of how migration
handles amplitude information, especially with regards to re-
flection coefficients and propagation effects such as geometri-
cal spreading losses. With the widespread use of work stations
and high-quality color displays, interpreters can easily make
amplitude attribute maps from processed seismic data. These
maps are often used to infer information about rock properties
such as porosity and fluid contents.
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It is essential that these maps really reflect true properties
of the sub-surface and not merely an artifact from the imag-
ing method being used. We show how one aspect of preserv-
ing amplitude information, namely dip-dependent geometrical
spreading (Fazzari 92)can be easily included in 3-D prestack
and poststack migration schemes.

THEORY

Forward problem

Our forward model consists of an acoustic medium where the
density is constant and a smooth background velocity  is as-
sumed to be known. The true, unknown velocity  at position

 is close to the background model in the sense that
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The difference  between the acoustic pressure  in the back-
ground model and the pressure  related with the unknown
velocity  can be expressed by the equation

   

Here w is the frequency and  w;  is the Green’s function
in the background model.  is given by
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a is related to the acoustic reflection coefficient R via the
relation (Stolt and Weglein 85)
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Here, the angle  is half the angle between incident and re-
flected waves at position x, and the partial derivative  is

normal to the local dip. The pressure in the background
model is given by

  =     (5)

where s is the source distribution.

Inverse problem

We define the inverse problem as minimizing the error func-
tion  with respect to 

J =
 

  

where  w) is the observed data computed from the seis-
mic data at the surface by
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       (7)

Here  is the adjoint Green’s function. The surface integral
extends over all receiver coordinates and  denotes differen-
tiation with respect to the surface normal. The left hand side
of equation (7)is simply the downward extrapolated data at
position  in the subsurface. The error in equation (6) is in
principle minimized over the space spanned by all frequencies
and the complete subsurface volume to be imaged. Equation
(6) has a well-known solution of the form

migration. However, one would have to abandon the much
used exploding reflector model and instead use a true zero-
offset model implied by equation (9).

D A T A  E X A M P L E

     (8)

where  is the migrated data written in vector form, and 
is the unknown function a written in vector form. The su-
perscript T denotes transponation and complex conjugation.
The inverse of the matrix  can not be easily calculated,
instead we use the diagonal elements only to arrive at the
approximate inverse

 
     

This leads to the following expression for a

       
          

Invoking the high-frequency asymptotic approximations for
the  function  and the migrated data  equation
(9) reduces to:

Fazzari (1992) have pointed out that conventional poststack
migration fails to provide the correct compensation for geo-
metrical spreading. Essentially migration only provides half
the correction, only compensating for the geometrical spread-
ing from the point of reflection and upwards to the receivers.
However, the geometrical spreading from the source and down
to the reflection point still remains. Conventional correction
techniques, fails to provide the needed correction, because it
is based on the plane-layer assumption. Reflections from dip-
ping beds are incorrectly compensated. Fazzari (1992) showed
that this effect may lead to incorrect amplitudes for strongly
dipping reflections. To provide the correct compensation, 
zari (1992) proposed to use a dip-dependent correction. By
using the expression for prestack migration given in equation
(9), we show that prestack migration automatically provide
the correct compensation for geometrical spreading. It is how-
ever also true that prestack migration based on equation (10)
provides the wrong compensation for geometrical spreading.
The main difference between equation (9) and equation (10) is
that the denominator in the former contains the forward mod-
elled wavefield associated with the background model. This
factor is missing in equation (10). Equation (10) (or closely
related forms) is conventionally used for prestack migration.

 
 

(9)

Equation (9)is nothing else than Claerbout’s U/D imaging
principle for pres t ack migration, derived from least -squares
inverse theory. The left hand side now has a physical meaning,
relating the migration image to the local reflection coefficient
through equation (4). Usually equation (9) is approximated
with

Two interesting conclusions can be drawn from equations (9)
and (IO). First, prestack migration via equation (9) provides
an estimate of a quantity closely related to the local reflection
coefficient. Second, equation (9) provides the correct correc-
tion for geometrical spreading losses, while the approximate
form equation (10) fails to do so. The main shortcoming of
equation (10)compared to (9) is the lack of compensation
for geometrical spreading along the raypath from the source
to the receiver. This is taken into account in equation (9)
through the denominator term involving the forward modeled
data  In effect equation (10) fails to take into account and
correct for the geometrical spreading from the source down
to the reflection point. Equation (10) corresponds to con-
ventional prestcak migration while equation (9) represents a
less used modified scheme. For cases where amplitude preser-
vation is important, equation (9) should be used in favor of
(10).

Equation (9) was originally developed for prestack data.

Diffractor model

To illustrate the effect of geometrical spreading compensation,
we use a model consisting of a constant background velocity
equal to 3000 m/s with two point diffractors embedded at a
depth of 600 m and 1200 m respectively. The strengths of
the two diffractors are equal. Figure 1 shows the result of
3-D prestack migration of data obtained with a single shot in
the middle of the model. The conventional approach given
by equation (10) was used to create the image. The lower
point diffractor has a significantly lower amplitude than the
upper reflector and is in fact invisible without scaling. Fig-
ure 2 shows 3-D prestack migration based on equation (9).
The amplitude of the lower diffractor is much larger than on
Figure 1. In principle the amplitude of the upper and lower
amplitude should have been equal, but the limited aperture
used in the example leads to amplitude losses in addition to
geometrical spreading. Figure 2 shows anyway a more correct
amplitude of the lower diffractor than Figure 1.

Steep-dip model

Figure 3 shows the velocity model used in our next example.
Figure 4 shows a prestack migration of a single shot using the
conventional equation (10). The amplitude of the strongly
dipping reflector starting at a depth of 1 km in the upper
right hand corner is strongly underestimated relative to the
other reflectors in the image, which is clearly seen by com-
paring Figure 4 with Figure 5. Figure 5 shows the result of
a prestack migration using equation (9). It is clear that the

It is however possible to use this equation also for poststack
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prestack method given  equation (9) gives a much more cor-
rect result with respect to amplitudes in the migrated image
than the more conventional method given by equation (10).
The geometrical spreading for the event travelling from the
source to the strongly dipping reflector at a depth of 1 km
and back to the receiver array is different than the geomet-
rical spreading for an event  from the source and
clown to the reflector at 3 km. This is due to the larger ve-
locities along the latter  even though the traveltimes
are comparable. Correcting for geometrical spreading before
migration would not solve the problem, but instead lead to
overcorrection of the strongly dipping reflector, as shown by

 (1992).

CONCLUSIONS

It has been demonstrated that   
ing correction can be built into prestack migration schemes 

modifying existing schemes slightly. The equation can be eas-
ily derived from least-squares inverse theory, which provides
the link between reflection coefficients (medium parameters)
and migrated data. Numerical examples have been given for
illustration.
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Fig 1. 3-D conventional prestack migration.

Fig 2. 3-D modified prestack migration.
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